Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(16): 7862-7873, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38568087

RESUMEN

Recent years have witnessed advances in chemical vapor deposition growth of graphene films on metal foils with fine scalability and thickness controllability. However, challenges for obtaining wrinkle-free, defect-free and large-area uniformity remain to be tackled. In addition, the real commercial applications of graphene films still require industrially compatible transfer techniques with reliable performance of transferred graphene, excellent production capacity, and suitable cost. Transferred graphene films, particularly with a large area, still suffer from the presence of transfer-related cracks, wrinkles and contaminants, which would strongly deteriorate the quality and uniformity of transferred graphene films. Potential applications of graphene films include moisture barrier films, transparent conductive films, electromagnetic shielding films, and optical communications; such applications call different requirements for the performance of transferred graphene, which, in turn, determine the suitable transfer techniques. Besides the reliable transfer process, automatic machines should be well developed for the future batch transfer of graphene films, ensuring the repeatability and scalability. This mini-review provides a summary of recent advances in the transfer of graphene films and offers a perspective for future directions of transfer techniques that are compatible for industrial batch transfer.

2.
Environ Res ; 252(Pt 2): 118792, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38583662

RESUMEN

Coal mining changes groundwater environment, results in deterioration of water quality and endangering human health in the mining area. However, the comprehensive study of groundwater evolution and its potential impact in mining area is still insufficient. In this study, 95 groundwater samples were collected from 2019 to 2020 in a typical mining area of China. Ion ratio coefficients, isotopic tracing technology, Entropy-weighted water quality index (EWQI) and human health risk assessment model (HHRA) were applicated to investigate the hydrochemical variation reasons, groundwater quality and its potential health risk in the study area. Results showed that the groundwater hydrochemical types changed from HCO3∙SO4-Ca∙Mg type to SO4-Ca∙Mg and SO4∙Cl-Ca∙Mg type. Water-rock interaction, agricultural activities, manure and sewage input, precipitation and evaporation controlled the groundwater hydrochemical composition. Groundwater quality showed a trend of fluctuation with an average EWQI of 59.23, 68.92, 63.75, 58.02 and 64.92, respectively. 91.6% of the water samples was fair and acceptable for drinking. The groundwater health risk of nitrate in the study area ranged from 0.03 to 17.80. Infants had the highest health risk and nitrate concentration was the most sensitive parameter. The results will present a comprehensive research of groundwater evolution and potential impacts through a typical mining area example. Thereby offering valuable insights into the influencing factors identification, hydrochemical processes evolution, protection and utilization of groundwater in global mining areas.

3.
Sci Bull (Beijing) ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38616150

RESUMEN

Traditional dual-ion lithium salts have been widely used in solid polymer lithium-metal batteries (LMBs). Nevertheless, concentration polarization caused by uncontrolled migration of free anions has severely caused the growth of lithium dendrites. Although single-ion conductor polymers (SICP) have been developed to reduce concentration polarization, the poor ionic conductivity caused by low carrier concentration limits their application. Herein, a dual-salt quasi-solid polymer electrolyte (QSPE), containing the SICP network as a salt and traditional dual-ion lithium salt, is designed for retarding the movement of free anions and simultaneously providing sufficient effective carriers to alleviate concentration polarization. The dual salt network of this designed QSPE is prepared through in-situ crosslinking copolymerization of SICP monomer, regular ionic conductor, crosslinker with the presence of the dual-ion lithium salt, delivering a high lithium-ion transference number (0.75) and satisfactory ionic conductivity (1.16 × 10-3 S cm-1 at 30 °C). Comprehensive characterizations combined with theoretical calculation demonstrate that polyanions from SICP exerts a potential repulsive effect on the transport of free anions to reduce concentration polarization inhibiting lithium dendrites. As a consequence, the Li||LiFePO4 cell achieves a long-cycle stability for 2000 cycles and a 90% capacity retention at 30 °C. This work provides a new perspective for reducing concentration polarization and simultaneously enabling enough lithium-ions migration for high-performance polymer LMBs.

4.
Adv Mater ; 36(15): e2308950, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38288661

RESUMEN

The real applications of chemical vapor deposition (CVD)-grown graphene films require the reliable techniques for transferring graphene from growth substrates onto application-specific substrates. The transfer approaches that avoid the use of organic solvents, etchants, and strong bases are compatible with industrial batch processing, in which graphene transfer should be conducted by dry exfoliation and lamination. However, all-dry transfer of graphene remains unachievable owing to the difficulty in precisely controlling interfacial adhesion to enable the crack- and contamination-free transfer. Herein, through controllable crosslinking of transfer medium polymer, the adhesion is successfully tuned between the polymer and graphene for all-dry transfer of graphene wafers. Stronger adhesion enables crack-free peeling of the graphene from growth substrates, while reduced adhesion facilitates the exfoliation of polymer from graphene surface leaving an ultraclean surface. This work provides an industrially compatible approach for transferring 2D materials, key for their future applications, and offers a route for tuning the interfacial adhesion that would allow for the transfer-enabled fabrication of van der Waals heterostructures.

6.
J Environ Manage ; 351: 119728, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086122

RESUMEN

The interaction between groundwater and surface water, including their recharge relationship and ratio, is crucial for water cycling, management, and pollution control. However, accurately estimating their spatiotemporal interaction at the watershed scale remains challenging. In this study, we used dual stable isotopes (δ18O, δ2H, d-excess, and lc-excess) and hydrochemistry methods to rethink spatiotemporal interaction at the Yiluo River watershed in central China. We collected 20 groundwater and 40 surface water samples over four periods in two seasons (dry and wet). Our results showed that in the downstream region, groundwater recharged surface water in the dry season while surface water recharged groundwater in the wet season, with average recharge ratios of 89.82% and 90.02%, respectively. In the midstream region, surface water recharged groundwater in both seasons with average ratios of 93.79% and 91.35%. In contrast, in the upstream region, groundwater recharged surface water in both seasons with ratios of 67.35% and 76.89%. Seasonal changes in the recharge relationship between surface water and groundwater in the downstream region also been found. Our findings provide valuable insights for watershed-scale water resource and pollution management.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Agua , Monitoreo del Ambiente/métodos , Isótopos , Ríos , China , Contaminantes Químicos del Agua/análisis
7.
Nat Commun ; 14(1): 6407, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828005

RESUMEN

Extreme fast charging of Ampere-hour (Ah)-scale electrochemical energy storage devices targeting charging times of less than 10 minutes are desired to increase widespread adoption. However, this metric is difficult to achieve in conventional Li-ion batteries due to their inherent reaction mechanism and safety hazards at high current densities. In this work, we report 1 Ah soft-package potassium-ion hybrid supercapacitors (PIHCs), which combine the merits of high-energy density of battery-type negative electrodes and high-power density of capacitor-type positive electrodes. The PIHC consists of a defect-rich, high specific surface area N-doped carbon nanotube-based positive electrode, MnO quantum dots inlaid spacing-expanded carbon nanotube-based negative electrode, carbonate-based non-aqueous electrolyte, and a binder- and current collector-free cell design. Through the optimization of the cell configuration, electrodes, and electrolyte, the full cells (1 Ah) exhibit a cell voltage up to 4.8 V, high full-cell level specific energy of 140 Wh kg-1 (based on the whole mass of device) with a full charge of 6 minutes. An 88% capacity retention after 200 cycles at 10 C (10 A) and a voltage retention of 99% at 25 ± 1 °C are also demonstrated.

8.
Environ Sci Pollut Res Int ; 30(41): 93862-93876, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37523088

RESUMEN

Runoff forecasting is extremely important for various activities of water pollution research and agricultural. Data-driven models have been proved an effective approach in predicting daily runoff when combining deep learning methods (DLM). However, predicting accuracy of daily runoff still need improved. Here, we firstly proposed a combined model of Gate Recurrent Unit (GRU) and Residual Network (ResNet) and compared with one shallow learning method (Back Propagation Neural Network, BPNN) and one deep learning method (GRU) with data from 2010 to 2020 in three stations in daily runoff forecasting in the Yiluo River watershed. The results showed that the combined model with precipitation data and runoff data as input has the highest prediction accuracy (NSE = 0.9325, 0.8735, 0.9186, respectively). Input data with precipitation have higher prediction accuracy than that without. The performance of the model was better in the dry season than the wet season. The topographic and geomorphic factors may also the main factors affecting runoff forecast. Those results of this study can provide useful strategies to predict short runoff and manage watershed scale water resources especially in the important agriculture region.


Asunto(s)
Triticum , Movimientos del Agua , Redes Neurales de la Computación , Agricultura , China
9.
Small ; 19(38): e2302015, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37222119

RESUMEN

Heterojunctions are a promising class of materials for high-efficiency bifunctional oxygen electrocatalysts in both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, the conventional theories fail to explain why many catalysts behave differently in ORR and OER, despite a reversible path (* O2 ⇋* OOH⇋* O⇋* OH). This study proposes the electron-/hole-rich catalytic center theory (e/h-CCT) to supplement the existing theories, it suggests that the Fermi level of catalysts determines the direction of electron transfer, which affects the direction of the oxidation/reduction reaction, and the density of states (DOS) near the Fermi level determines the accessibility for injecting electrons and holes. Additionally, heterojunctions with different Fermi levels form electron-/hole-rich catalytic centers near the Fermi levels to promote ORR/OER, respectively. To verify the universality of the e/h-CCT theory, this study reveals the randomly synthesized heterostructural Fe3 N-FeN0.0324 (Fex N@PC with DFT calculations and electrochemical tests. The results show that the heterostructural F3 N-FeN0.0324 facilitates the catalytic activities for ORR and OER simultaneously by forming an internal electron-/hole-rich interface. The rechargeable ZABs with Fex N@PC cathode display a high open circuit potential of 1.504 V, high power density of 223.67 mW cm-2 , high specific capacity of 766.20 mAh g-1 at 5 mA cm-2 , and excellent stability for over 300 h.

10.
Proc Natl Acad Sci U S A ; 120(9): e2209807120, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36812210

RESUMEN

Since first developed, the conducting materials in wireless communication and electromagnetic interference (EMI) shielding devices have been primarily made of metal-based structures. Here, we present a graphene-assembled film (GAF) that can be used to replace copper in such practical electronics. The GAF-based antennas present strong anticorrosive behavior. The GAF ultra-wideband antenna covers the frequency range of 3.7 GHz to 67 GHz with the bandwidth (BW) of 63.3 GHz, which exceed ~110% than the copper foil-based antenna. The GAF Fifth Generation (5G) antenna array features a wider BW and lower sidelobe level compared with that of copper antennas. EMI shielding effectiveness (SE) of GAF also outperforms copper, reaching up to 127 dB in the frequency range of 2.6 GHz to 0.32 THz, with a SE per unit thickness of 6,966 dB/mm. We also confirm that GAF metamaterials exhibit promising frequency selection characteristics and angular stability as flexible frequency selective surfaces.

11.
Sci Total Environ ; 863: 160975, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36539098

RESUMEN

Nitrogen-nitrate contamination has been recognized as the main threaten to the large lake surrounding with the intensive agriculture activities. However, there are still insufficient studies on the interannual evolution of nitrogen-nitrate, source and its impact on the environment and human health in the large fresh water lake. In this study, 248 samplings were collected in Poyang Lake from 2013 to 2018, multi-methods (mathematical statistics method, grey correlation analysis, person correlation analysis and human health risk assessment) to investigate the spatiotemporal variations, impact factors and potential health risks of NO2--N, NO3--N and NH4+-N. The results showed that the middle region had the highest NO2- concentration (mean 0.04µg/l), the northern region had the highest NO3- concentration (mean 1.12 mg/l), and the southern region had the highest NH4+ concentration (mean 0.48 mg/l). For NO3- and NH4+, the concentration was higher than in the wet season. While the concentration of NO2- had the reverse trend. Grey correlation analysis and person correlation analysis results indicate that nitrogen fertilizer, waste water, pH, CODMn and temperature were main factors affecting the nitrogen concentration in Poyang Lake. Health risk assessment results revealed that potential hazards in the study area were acceptable (HR < 1). NO3- provided the highest health risks, and oral ingestion is the major source of local nitrogen health risk. Those results can provide the reference for developing the treatment methods of the international large freshwater lake.


Asunto(s)
Nitrógeno , Contaminantes Químicos del Agua , Humanos , Nitrógeno/análisis , Lagos/análisis , Nitratos/análisis , Monitoreo del Ambiente/métodos , Dióxido de Nitrógeno/análisis , China , Contaminantes Químicos del Agua/análisis
12.
Environ Sci Technol ; 56(24): 17936-17945, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36482675

RESUMEN

Amine-based scrubbing technique is recognized as a promising method of capturing CO2 to alleviate climate change. However, the less stability and poor acidity of solid acid catalysts (SACs) limit their potential to further improve amine regeneration activity and reduce the energy penalty. To address these challenges, here, we introduce two-dimensional (2D) cobalt-nitrogen-doped carbon nanoflakes (Co-N-C NSs) driven by a layered metal-organic framework that work as SACs. The designed 2D Co-N-C SACs can exhibit promising stability, superhydrophilic surface, and acidity. Such 2D structure also contains well-confined Co-N4 Lewis acid sites and -OH Brønsted acid sites to have a synergetic effect on C-N bond disruption and significantly increase CO2 desorption rate by 281% and reduce the reaction temperatures to 88 °C, minimizing water evaporation by 20.3% and subsequent regeneration energy penalty by 71.7% compared to the noncatalysis.


Asunto(s)
Dióxido de Carbono , Ácidos de Lewis , Aminas , Carbono , Cambio Climático
14.
Nat Commun ; 13(1): 4409, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906212

RESUMEN

The availability of graphene and other two-dimensional (2D) materials on a wide range of substrates forms the basis for large-area applications, such as graphene integration with silicon-based technologies, which requires graphene on silicon with outperforming carrier mobilities. However, 2D materials were only produced on limited archetypal substrates by chemical vapor deposition approaches. Reliable after-growth transfer techniques, that do not produce cracks, contamination, and wrinkles, are critical for layering 2D materials onto arbitrary substrates. Here we show that, by incorporating oxhydryl groups-containing volatile molecules, the supporting films can be deformed under heat to achieve a controllable conformal contact, enabling the large-area transfer of 2D films without cracks, contamination, and wrinkles. The resulting conformity with enhanced adhesion facilitates the direct delamination of supporting films from graphene, providing ultraclean surfaces and carrier mobilities up to 1,420,000 cm2 V-1 s-1 at 4 K.

15.
ACS Nano ; 16(3): 3934-3942, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35225592

RESUMEN

A macroscopic-assembled graphene oxide (GO) membrane with sustainable high strength presents a bright future for its applications in ionic and molecular filtration for water purification or fast force response for sensors. Traditionally, the bottom-up macroscopic assembly of GO sheets is optimized by widening the interlaminar space for expediting water passage, frequently leading to a compromise in strength, assembly time, and ensemble thickness. Herein, we rationalize this strategy by implanting a superhydrophilic bridge of cobalt-based metal-organic framework nanosheets (NMOF-Co) as an additional water "aisle" into the interlaminar space of GO sheets (GO/NMOF-Co), resulting in a high-strength macroscopic membrane ensemble with tunable thickness from the nanometer scale to the centimeter scale. The GO/NMOF-Co membrane assembly time is only 18 s, 30800 times faster than that of pure GO (154 h). More importantly, the obtained membrane attains a strength of 124.4 MPa, which is more than 3 times higher than that of the GO membrane prepared through filtration. The effect of hydrophilicity on membrane assembly is also investigated by introducing different intercalants, suggesting that, except for the interlamellar spacing, the interlayered hydrophilicity plays a more decisive role in the macroscopic assembly of GO membranes. Our results give a fundamental implication for fast macroscopic assembly of high-strength 2D materials.

16.
Environ Sci Technol ; 56(7): 4531-4541, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35199990

RESUMEN

Substantial energy penalty of valuable sulfate recovery restricts the efficiency of wet desulfurization and increases the risk of Hg0 reemission. Although the enhanced sulfite oxidation rate with cobalt-based materials can increase the energy efficiency, inactivation and poisoning of catalyst due to the competition of reactant must be addressed. Here we obtained a superwetting two-dimensional cobalt-nitrogen-doped carbon (2D Co-N-C) nanosheet featuring confined catalysis/adsorption sites for the energy-efficient sulfite oxidation and Hg2+ adsorption. The designed structure exhibits enhanced surface polarity, availability and short reactant diffusion path, thus enabling the significant catalytic TOF value of 0.085 s-1 and simultaneous mercury removal ability of 143.26 mg·g-1. The catalyst nanosheets present regenerating stabilities to improve cost-efficiency. By deployment of the Co-N-C catalysts, a marked reduction of heat penalty up to 69% can be achieved, which makes this catalytic pathway for sulfur resource recovery economically feasible in real industry scenario.


Asunto(s)
Mercurio , Azufre , Adsorción , Catálisis , Cobalto/química , Oxidación-Reducción , Azufre/química
17.
Front Chem ; 9: 727574, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660529

RESUMEN

As a primary goal, this review highlights the role of supramolecular interactions in the assembly of new sustainable materials incorporating functional porphyrins and carbon nanoplatforms as building blocks for photovoltaics advancements.

19.
Sci Rep ; 10(1): 9592, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32533065

RESUMEN

The optical response of a graphene oxide integrated silicon micro-ring resonator (GOMRR) to a range of vapour phase Volatile Organic Compounds (VOCs) is reported. The response of the GOMRR to all but one (hexane) of the VOCs tested is significantly higher than that of the uncoated (control) silicon MRR, for the same vapour flow rate. An iterative Finite Difference Eigenmode (FDE) simulation reveals that the sensitivity of the GO integrated device (in terms of RIU/nm) is enhanced by a factor of ~2, which is coupled with a lower limit of detection. Critically, the simulations reveal that the strength of the optical response is determined by molecular specific changes in the local refractive index probed by the evanescent field of the guided optical mode in the device. Analytical modelling of the experimental data, based on Hill-Langmuir adsorption characteristics, suggests that these changes in the local refractive index are determined by the degree of molecular cooperativity, which is enhanced for molecules with a polarity that is high, relative to their kinetic diameter. We believe this reflects a molecular dependent capillary condensation within the graphene oxide interlayers, which, when combined with highly sensitive optical detection, provides a potential route for discriminating between different vapour phase VOCs.

20.
J Am Chem Soc ; 142(29): 12643-12650, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32584563

RESUMEN

The controllable synthesis of stable single-metal site catalysts with an expected coordination environment for high catalytic activity and selectivity is still challenging. Here, we propose a cation-exchange strategy for precise production of an edge-rich sulfur (S) and nitrogen (N) dual-decorated single-metal (M) site catalysts (M = Cu, Pt, Pd, etc.) library. Our strategy relies on the anionic frameworks of sulfides and N-rich polymer shell to generate abundant S and N defects during high-temperature annealing, further facilitating the stabilization of exchanged metal species with atomic dispersion and excellent accessibility. This process was traced by in situ transmission electron microscopy, during which no metal aggregates were observed. Both experiments and theoretical results reveal the precisely obtained S, N dual-decorated Cu sites exhibit a high activity and low reaction energy barrier in catalytic hydroxylation of benzene at room temperature. These findings provide a route to controllably produce stable single-metal site catalysts and an engineering approach for regulating the central metal to improve catalytic performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...